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A fast Newton method is presented for solving the entropy maximization

problem in the Bayesian statistical approach to phase estimation. The method

requires only O�n log n� instead of standard O�n3� ¯oating point operations per

iteration, while converging in the same rate as the standard Newton method.

The method is described and related computational issues are discussed.

Numerical results on simple test cases are also presented to demonstrate the

behavior of the method.

1. Introduction

The phase problem in X-ray crystallography is often ap-

proached using statistical methods. In the Bayesian approach

(Bricogne, 1984, 1988, 1991, 1993, 1997) to the phase problem,

the joint probability distribution of the structure factors is

required for every basis set of the structure factors. It is

computed by maximizing the entropy of the crystal system

subject to certain constraints on the structure factors (Jaynes,

1957, 1968; Bricogne, 1984). The entropy-maximization

problem is an in®nite-dimensional convex programming

problem but can be solved in a ®nite dual space by using a

standard Newton method (Alhassid et al., 1978; Dennis &

Schnabel, 1983; Fletcher, 1987).

The Newton method converges fast but is costly; in general,

requiring O�n3� ¯oating point operations per iteration, where

n is the number of variables. For entropy maximization, n can

be as large as several tens of thousands. Furthermore, the

problem needs to be solved repeatedly. Therefore, the stan-

dard Newton method is too expensive to be used in practice.

Alternative approaches have been proposed (Bricogne,

1984, 1993; Prince, 1989; Bricogne & Gilmore, 1990).

Although cheaper per iteration, they lost the fast convergence

property of the Newton method. In other words, the methods

may need many more iterations to converge.

In this paper, we present a fast Newton method for solving

the entropy-maximization problem. The method is equivalent

to the standard Newton method in the sense that it generates

the same iterates and hence has the same convergence rate as

the standard Newton. On the other hand, the cost per iteration

is reduced from O�n3� to O�n log n� ¯oating point operations.

More speci®cally, we consider the entropy maximization

problem in its dual form as ®rst suggested by Alhassid et al.

(1978). We apply a so-called Sherman±Morrison±Woodbury

formula to the inverse of the Hessian of the objective function.

The inverse can then be computed in terms of the inverse of

a Karle±Hauptman matrix (Karle & Hauptman, 1952). The

inverse of the Karle±Hauptman matrix can be computed by

using a fast Fourier transform, which requires only O�n log n�
¯oating point operations (Van Loan, 1992; Tolimieri et al.,

1997). Then, the total cost in computing a Newton step can be

reduced to O�n log n� ¯oating point operations.

The paper is organized as follows. We describe the entropy-

maximization problem and its dual form in x2. We discuss

previous approaches to the problem in x3, and present our

method and related convergence and complexity results in x4.

We present preliminary computational results in x5, and

conclude the paper in x6.

2. Entropy maximization

Consider a crystal system with a unit-cell space V. Let � be a

density distribution function that describes the electron-

density distribution of the system. Let m be the uniform

distribution function. We consider the entropy of � relative to

m,

Sm��� � ÿ
R
V

��r� log���r�=m�r�� dr:

Let fHj : j � 1; . . . ; ng be a set of integer vectors in the reci-

procal space of the crystal. We assume that the Hj are not

equal to zero. We are interested in an electron-density

distribution � such that the entropy of � relative to m is

maximized under the condition that the structure factors FHj

of � must be equal to a given set of values F�Hj
, j � 1; . . . ; n.

This problem can be formulated as a constrained maximiza-

tion problem,
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max�

s:t:

Sm���
FHj
� R

V

��r�CHj
�r� dr � F�Hj

; j � 1; . . . ; nR
V

��r� dr � 1;

where

CHj
�r� � exp�2�iHT

j r�; j � 1; . . . ; n:

Note that the objective function of the problem is concave and

the constraint functions are linear. The entropy-maximization

problem therefore belongs to a special class of optimization

problems called convex programming problems. A convex

programming problem has nice properties. For example, a

local solution to a convex programming problem is also global,

and it can be obtained by solving an equivalent dual problem.

By following a routine procedure, we can obtain a dual

problem for the entropy maximization problem in the

following form:

min
�H1

;...;�Hn

D��H1
; . . . ; �Hn

� � log Z��H1
; . . . ; �Hn

� ÿPn
j�1

F�Hj
�Hj
;

where �H1
; . . . ; �Hn

are complex variables called dual vari-

ables and

Z��H1
; . . . ; �Hn

� � R
V

m�r� exp
Pn
j�1

�Hj
CHj
�r�

" #
dr:

We call the original entropy-maximization problem the primal

problem and the variable � the primal variable. The dual

problem is clearly simpler than the primal problem: It is an

unconstrained optimization problem. The objective function is

also de®ned in ®nite-dimensional space, while the primal

problem is an in®nite-dimensional problem since its variable �
is actually a function.

The primal and dual variables have the following relation:

��r� � m�r�
Z��H1

; . . . ; �Hn
� exp

Pn
j�1

�Hj
CHj
�r�

" #
:

Therefore, given any �H1
; . . . ; �Hn

, a corresponding density

distribution function � can immediately be de®ned, and the

entropy Sm and the structure factors FHj
of � can also be

computed.

For any �H1
; . . . ; �Hn

, the gradient and the Hessian of the

objective function D can be computed by using the following

formulas:

rD � F ÿ F�; r2D � K ÿ FFH;

where F � �FH1
; . . . ;FHn

�T, F� � �F�H1
; . . . ;F�Hn

�T and K is a

matrix, Kjk � FHjÿHk
. We can show that r2D is positive

de®nite, therefore D must be a strictly convex function. For

detailed mathematical proofs, readers are referred to Wu et al.

(2001).

3. Previous approaches

We now consider the solution of the dual minimization

problem. The objective function of the problem is D. The

variables are �H1
; . . . ; �Hn

. We want to ®nd a set of

�H1
; . . . ; �Hn

so that D��H1
; . . . ; �Hn

� is minimized. Since D is

strictly convex, it follows that the dual problem can be solved

by using a standard Newton method. In this method, we ®rst

choose an initial point ��0� � ���0�H1
; . . . ; ��0�Hn

�T . We then

compute a sequence of points by the following iteration:

��l�1� � ��l� ÿ �r2D���l���ÿ1rD���l��;

where ��l� � ���l�H1
; . . . ; ��l�Hn

�T, l � 0. The sequence will con-

verge to a point where D is minimized.

The Newton method converges to the solution quickly,

typically in a few iterations. However, it is very costly since in

each iteration it usually requires O�n3� ¯oating point opera-

tions to compute the inverse of the Hessian multiplied by the

gradient of the objective function.

In X-ray crystallography applications, the entropy-maxi-

mization problem can be very large: When transformed to the

dual problem, n, the number of variables, can be as large as

several tens of thousands. Therefore, a straightforward

implementation of Newton's method will not be practical,

especially when the problem needs to be solved many times, as

required in the Bayesian statistical approach to phase deter-

mination. In order to reduce the cost of Newton's method,

Bricogne (1984) suggested an approximation of the Hessian of

D so that the inverse of the approximated Hessian can be

computed in a cheaper way. As we have shown before, the

Hessian of D is equal to a Karle±Hauptman matrix K minus a

matrix FFH for some vector F. Therefore, Bricogne (1984)

suggested using this K matrix as an approximation to the

Hessian of D, since the inverse of K can be computed by using

a fast Fourier transform, which costs only O�n log n� ¯oating

point operations. However, after the approximation, the

minimization method is no longer formally the Newton

method, and fast convergence of the method is no longer

guaranteed. Bricogne (1993) showed reasonably ef®cient

solutions obtained by the approximation method on some test

problems but, in general, the method may take more iterations

to converge and the total cost can still be quite large. Some

other approaches have also been proposed such as using the

BFGS method (Prince, 1989). The BFGS method does not

compute the inverse of the Hessian explicitly but the inverse

actually is required in the Bayesian analysis following entropy

maximization. Therefore, it is still an issue how the inverse of

the Hessian can be computed with less than O�n3� ¯oating

point operations.

4. A fast Newton method

We now present a fast Newton method for solving the entropy

maximization problem. The method requires only O�n log n�
¯oating point operations for each of its iterates, yet has the

same convergence rate as the standard Newton method.



First, consider the iteration of Newton's method we have

discussed in the previous section. Note that the major

computation cost in the iteration is the computation of the so-

called Newton step,

ÿ�r2D�ÿ1rD:

Based on previous discussion, the gradient and the Hessian of

D can be computed in the following form:

rD � F ÿ F�; r2D � K ÿ FFH :

Because of the special structure of r2D, it follows that the

inverse of r2D can be computed in terms of the inverse of K

by using a so-called Sherman±Morrison±Woodbury formula.

The Sherman±Morrison±Woodbury formula usually applies

to nonsingular matrices (see Sherman, 1978; Dennis &

Schnabel, 1983; Fletcher, 1987). For our purpose, we give a

more speci®c version of the formula for positive de®nite

matrices in the following.

Let T and S be two Hermite matrices, U a vector and

suppose that T � Sÿ UUH . Let S be nonsingular and

� � UHSÿ1U. Then, if S is positive de®nite and � < 1, T is also

positive de®nite and

Tÿ1 � Sÿ1 � Sÿ1UUHSÿ1=�1ÿ ��:

It is not dif®cult to show that K is positive de®nite and

FHKÿ1F< 1. Therefore, we can apply the Sherman±

Morrison±Woodbury formula to r2D to obtain

�r2D�ÿ1 � Kÿ1 � Kÿ1FFHKÿ1

1ÿ FHKÿ1F
:

It follows that

ÿ�r2D�ÿ1rD � ÿ�K ÿ FFH�ÿ1�F ÿ F�� � V � FHV

1ÿ FHU
U;

where

V � Kÿ1�F� ÿ F�; U � Kÿ1F: �1�
The inverse of K and its multiplication with a vector can all be

computed by using a fast Fourier transform. Therefore, the

total cost for computing the Newton step can now be reduced

to O�n log n� ¯oating point operations. For a more formal

discussion on these issues, readers are referred to Wu et al.

(2001).

Fig. 1 contains an outline of the fast Newton method

constructed using the above formulas. In the ®rst step, an

initial guess ��0� is given and l is set to zero. Then step 2 is

repeated. First, in step 2(a), given ��l�H1
; . . . ; ��l�Hn

, the corre-

sponding ��l� and Z���l�� are computed; they can be computed

together through an inverse Fourier transform, which requires

only O�n log n� ¯oating point operations. In step 2(b), another

Fourier transform is applied to ��l� to obtain the structure

factors F
�l�
Hj

and the cost is again of the order of n log n.

In step 2(c), two Fourier transforms are required for two

matrix±vector products, �K�l��ÿ1��l� and �K�l��ÿ1F�l�. Finally, in

step 2(d), the Newton step is formed with the Sherman±

Morrison±Woodbury formula and a new iterate ��l�1� is

obtained. The whole step 2(d) requires only vector±vector

operations and costsO�n� ¯oating point operations. In the end

of the iteration, if the new iterate is optimal, the whole

procedure stops; otherwise, it continues until the iteration

converges. In any case, each iteration requires only O�n log n�
¯oating point operations.

5. Preliminary computational results

We have implemented the fast Newton method in Matlab and

compared it with several other methods including a gradient

method, a standard Newton method and a method with

Hessian approximation. By Hessian approximation, we mean
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Figure 1
Outline of the fast Newton method.

Table 1
Comparison with a gradient algorithm (number of iterations).

No. of factors 8 16 32 64 128 256 512
Gradient 65 68 68 67 65 65 64
Fast Newton 6 6 6 6 6 6 6

Table 2
Comparison with an approximation algorithm (number of iterations).

No. of factors 8 16 32 64 128 256 512
Approximation 18 16 16 14 14 14 14
Fast Newton 6 6 6 6 6 6 6
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that we use K instead of K ÿ FFH as an

approximation to the Hessian of the func-

tion D.

We have tested the methods with a set of

model problems generated in the following

procedure. We ®rst constructed a one-

dimensional density distribution function.

We then generated seven sets of structure

factors from the function. The ®rst set has 8 structure factors,

the second 16, the third 32, the fourth 64, the ®fth 128, the

sixth 256 and the seventh 512. From each set of structure

factors, we de®ne an entropy-maximization problem with the

corresponding structure factors as the constraints. We then

obtain seven entropy-maximization problems.

We applied the methods to the model problems and

recorded the number of iterations required for the method to

converge to the solution to the problem. We also recorded the

total number of ¯oating point operations for each run.

Note that we used the Matlab routine for the fast Fourier

transform required in the methods. We also used the Matlab

routine for the linear system solution in the standard Newton

method. In each iteration, the gradient method needs to

compute the function and the gradient. Given �H1
; . . . ; �Hn

,

the function and the gradient of D can both be obtained by

fast Fourier transform. Therefore, the cost of each iteration in

the gradient method is O�n log n�. However, the gradient

method converges only linearly and may take too many

iterations to reach a solution.

When the Hessian is approximated by K, the inverse of the

Hessian can be computed in O�n log n�. So the approximation

method should take the same order of ¯oating point opera-

tions in each iteration as the fast Newton method. However,

because of the approximation, the method is no longer a

Newton method and, therefore, the fast convergence rate of

Newton's method will be lost.

Tables 1, 2 and 3 show the performance of the methods in

terms of the number of iterations or the total number of

¯oating point operations. Table 1 shows the numbers of

iterations required for the gradient method. Clearly, it took

many more iterations to converge than the fast Newton

method, which for all the test problems took only 6 iterations.

Table 2 shows the number of iterations required by the

approximation method. For all the problem instances, the

method took two to three times more iterations than the fast

Newton method. Since the test problems we have constructed

are relatively simple and easy, we expect the difference

between the two methods to be bigger in practice when the

problem is larger and more complicated. In any case, there is

no theory to guarantee that the approximation method will

converge fast.

Table 3 shows the total numbers of ¯oating point operations

required by the standard and fast Newton methods. As we can

see from the table, the standard Newton method required

many more ¯oating point operations than the fast Newton

method. For example, for the test problem with 128 structure

factors, the fast Newton method required about 200000

¯oating point operations, while the standard Newton method

needed more than 13 � 106 ¯oating point operations. The fast

Newton method was about 60 times faster. When the problem

size becomes larger, we observed even bigger differences

between the two methods.

6. Concluding remarks

In this paper, we report our studies on the entropy maximi-

zation problem in the Bayesian statistical approach to the

phase problem in protein X-ray crystallography. Since the

solution to the problem is required in every step of the

Bayesian method, an ef®cient method for solving the problem

is important especially for large-scale applications. Previous

approaches used standard Newton or approximation methods.

They were either costly, requiring O�n3� computation time, or

not able to guarantee fast convergence, where n is the number

of structure factors of interest. We derived a formula to

compute the inverse of the Hessian in O�n log n� computation

time, thereby reducing the time complexity of the Newton

method. As a result, we should now be able to apply Newton's

method to large-scale problems with both low computational

cost and fast convergence rate.

We have described our computational experiments with the

fast Newton method. The results from using the method for a

set of simple test problems were compared with some other

methods and show that the fast Newton method converged in

fewer iterations than a typical gradient method and a method

with Hessian approximation, although they all required the

same order of ¯oating point operations in each iteration. On

the other hand, the fast Newton method required much less

computation than the standard Newton method, although they

both converged in the same rate. The results imply that the

fast Newton method can be used to reduce the high cost of the

standard Newton method, while converging as fast as the

standard Newton and certainly faster than the gradient and

Hessian-approximation methods. This makes it possible to

solve large-scale entropy maximization problems in practice

and to develop more ef®cient and reliable phase estimation

procedures for structure determination.
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Table 3
Comparison with a standard Newton algorithm (number of ¯oating point operations).

No. of factors 8 16 32 64 128 256 512
Standard 12873 57869 308769 1912061 13192377 97403093 747295473
Fast Newton 8596 22347 48307 104211 224403 481971 1031891
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